

Welcome to django-authority’s documentation!

django-authority is a powerful layer between Django’s basic permission system
(provided through django.contrib.auth) and your application:

[image: _images/authority-scheme-layer.png]
This application provides three abilities:

	It gives you the ability to add permissions like Django’s generic
permissions to any kind of model without having to add them to the model’s
Meta class.

	It provides a very simple way to create per-object-permissions. You might
be more familiar with the term row level permissions.

	It wraps Django’s generic permissions so you can use the same syntax as
for the options above. But note that django-authority does not add any
voodoo-code to Django’s contrib.auth system, it keeps your existing
permission system intact!

django-authority uses a cache that is stored on the user object to help improve
performance. However, if the Permission table changes the cache will need
to be invalidated. More information about this can be found in the tips and
tricks section.

Warning

We have just started with the documentation and it’s far from
being perfect. If you find glitches, errors or just have feedback, please
contact the team: Support.

Documentation

Note

The create-permission topics are based on each other. If you are new
to django-authority we encourage to read from top to bottom.

Installation topics:

	Installation

	Configuration

Create and check permissions:

	Create a basic permission

	Create a per-object permission

	Create a custom permission

Permission checks in detail

	Check permissions in python code

	Check permissions using the decorator
	The decorator syntax

	Contributed decorators

	Check permissions in templates
	ifhasperm

	get_permissions

	get_permission

Permission assigning and handling

	Handling permissions in python code

	Handling permissions using Django’s admin interface

	Handling permissions using templates

Other pages

	Search Page

	Index

	Hints, tips and tricks

	Support

	Documentation Guildlines

Installation

The installation of django-authority is easy. Whether you want to use the
latest stable or development version, you have the following options.

The latest stable version

The latest, stable version is always available via the Python package index_
(PyPI). You can download the latest version on the site [http://pypi.python.org/pypi/django-authority/] but most users
would prefer either pip or easy_install:

pip install django-authority

.. or with easy_install:

easy_install django-authority

Development version

The latest development version is located on it’s Github account [https://github.com/jazzband/django-authority/]. You
can checkout the package using the Git [http://gitscm.org/] scm:

git clone https://github.com/jazzband/django-authority

Then install it manually:

cd django-authority
python setup.py install

Warning

The development version is not fully tested and may contain
bugs, so we prefer to use the latest package from pypi.

Configuration

settings.py

To enable django-authority you just need to add the package to your
INSTALLED_APPS setting within your settings.py:

settings.py
INSTALLED_APPS = (
 ...
 'authority',
)

Make sure your settings.py contains the following settings to enable the
context processors:

TEMPLATE_CONTEXT_PROCESSORS = (
 'django.core.context_processors.auth',
 'django.core.context_processors.debug',
 'django.core.context_processors.i18n',
 'django.core.context_processors.media',
 'django.core.context_processors.request',
)

django-authority defaults to using a smart cache when checking permissions.
This can be disabled by adding the following line to settings.py:

AUTHORITY_USE_SMART_CACHE = False

urls.py

You also have to modify your root URLConf (e.g. urls.py) to include the
app’s URL configuration and automatically discover all the permission
classes you defined:

from django.contrib import admin
import authority

admin.autodiscover()
authority.autodiscover()

...

urlpatterns += patterns('',
 (r'^authority/', include('authority.urls')),
)

If you’re using Django 1.1 this will automatically add a site-wide action [http://docs.djangoproject.com/en/dev/ref/contrib/admin/actions/]
to the admin site which can be removed as shown here: Handling permissions using Django’s admin interface.

That’s all (for now).

Create a basic permission

Where to store permissions?

First of all: All following permission classes should be placed in a file
called permissions.py in your application. For the why please have a
look on How permissions are discovered.

Basic permissions

Let’s start with an example:

import authority
from authority import permissions
from django.contrib.flatpages.models import FlatPage

class FlatpagePermission(permissions.BasePermission):
 label = 'flatpage_permission'

authority.register(FlatPage, FlatpagePermission)

Let’s have a look at the code above. First of, if you want to create a new
permission you have to subclass it from the BasePermission class:

from authority import permissions
class FlatpagePermission(permissions.BasePermission):
 # ...

Next, you need to name this permission using the label attribute:

class FlatpagePermission(permissions.BasePermission):
 label = 'flatpage_permission'

And finally you need to register the permission with the pool of all other
permissions:

authority.register(FlatPage, FlatpagePermission)

The syntax of this is simple:

authority.register(<model>, <permission_class>)

While this is not much code, you already wrapped Django’s basic permissions
(add_flatpage, change_flatpage, delete_flatpage) for the model FlatPage
and you are ready to use it within your templates or code:

Note

See Django’s basic permissions [http://docs.djangoproject.com/en/dev/topics/auth/#permissions] how Django creates this permissions for you.

Example permission checks

This section shows you how to check for Django’s basic permissions with
django-authority.

In your python code

def my_view(request):
 check = FlatPagePermission(request.user)
 if check.change_flatpage():
 print "Yay, you can change a flatpage!"

Using the view decorator

from authority.decorators import permission_required_or_403

@permission_required_or_403('flatpage_permission.change_flatpage')
def my_view(request):
 # ...

See Check permissions using the decorator how the decorator works in detail.

In your templates

{% ifhasperm "flatpage_permission.change_flatpage" request.user %}
 Yay, you can change a flatpage!
{% else %}
 Nope, sorry. You aren't allowed to change a flatpage.
{% endifhasperm %}

See Check permissions in templates how the templatetag works in detail.

How permissions are discovered

On first runtime of your Django project authority.autodiscover() will
load all permissions.py files that are in your settings.INSTALLED_APPS
applications. See Configuration how to set up autodiscover.

[image: _images/authority-permission-py.png]
We encourage you to place your permission classes in a file called
permissions.py inside your application directories. This will not only
keep your application files clean, but it will also load every permission
class at runtime when used with authority.autodiscover().

If you really want, you can place these permission-classes in other files
that are loaded at runtime. __init__.py or models.py are such files.

Create a per-object permission

django-authority provides a super simple but nifty feature called per-object
permission. A description would be:

Attach a <codename> to an object
Attach a <codename> to an user

If the user has <codename> and the object has <codename> then do-something,
otherwise do-something-else.

This might sound strange but let’s have a closer look on this pattern.
In terms of users and flatpages a visual example would be:

[image: _images/authority-object-1to1.png]
The user is allowed to review the flatpage “Events”.

You are not limited to a 1:1 relation, you can add this codename to
multiple objects:

[image: _images/authority-object-1toN.png]
The user is allowed to review the flatpages “Events” and “Contact”.

And you can do this with any objects in any direction:

[image: _images/authority-object-NtoN.png]
The user is allowed to review the flatpages “Events” and “Contact”. Another
user is allowed to publish the flatpage “Events”.

Create per-object permissions

Creating per-object permissions is super simple. See this piece of permission
class code:

class FlatPagePermission(BasePermission):
 label = 'flatpage_permission'
 checks = ('review',)

authority.register(FlatPage, FlatPagePermission)

This permission class is similar to the one we already created in
Create a basic permission but we added the line:

checks = ('review',)

This tells the permission class that it has a permission check (or codename)
review. Under the hood this check gets translated to review_flatpage
(review_<modelname>).

Important

Be sure that you have understand that we have not written any
line of code yet. We just added the codename to the checks attribute.

Attach per-object permissions to objects

Please see Handling permissions using Django’s admin interface for this.

Check per-object permissions

As we noted above, we have not written any permission comparing code yet. This
is your work. In theory the permission lookup for per-object permissions is:

if <theuser> has <codename> and <object> has <codename>:
 return True
else:
 return False

Important

The syntax is similiar to the permission checks we’ve already
seen in Create a basic permission for the basic permissions but now
we have to pass each function a model instance we want to check!

In your python code

from myapp.permissions import FlatPagePermission
def my_view(request):
 check = FlatPagePermission(request.user)
 flatpage_object = Flatpage.objects.get(url='/homepage/')
 if check.review_flatpage(flatpage_object):
 print "Yay, you can change *this* flatpage!"

Using the view decorator

from django.contrib.auth import Flatpage
from authority.decorators import permission_required_or_403

@permission_required_or_403('flatpage_permission.review_flatpage',
 (Flatpage, 'url__iexact', 'url')) # The flatpage_object
def my_view(request, url):
 # ...

See Check permissions using the decorator how the decorator works in detail.

In your templates

{% ifhasperm "flatpage_permission.review_flatpage" request.user flatpage_object %}
 Yay, you can change *this* flatpage!
{% else %}
 Nope, sorry. You aren't allowed to change *this* flatpage.
{% endifhasperm %}

See Check permissions in templates how the template tag works in detail.

Create a custom permission

django-authority allows you to define powerful custom permission. Let’s start
again with an example code:

import authority
from authority import permissions
from django.contrib.flatpages.models import Flatpage

class FlatpagePermission(permissions.BasePermission):
 label = 'flatpage_permission'

authority.register(Flatpage, FlatpagePermission)

A custom permission is a simple method of the permission class:

import authority
from authority import permissions
from django.contrib.flatpages.models import Flatpage

class FlatpagePermission(permissions.BasePermission):
 label = 'flatpage_permission'
 checks = ('my_custom_check',)

 def my_custom_check(self, flatpage):
 if(flatpage.url == '/about/'):
 return True
 return False

authority.register(Flatpage, FlatpagePermission)

Note that we first added the name of your custom permission to the checks
attribute, like in Create a per-object permission:

checks = ('my_custom_check',)

The permission itself is a simple function that accepts an arbitrary number of
arguments. A permission class should always return a boolean whether the
permission is True or False:

def my_custom_check(self, flatpage):
 if flatpage.url == '/about/':
 return True
 return False

Warning

Although it’s possible to return other values than True, for
example an object which also evluates to True, we highly advise to only
return booleans.

Custom permissions are not necessary related to a model, you can define simpler
permissions too. For example, return True if it’s between 10 and 12 o’clock:

def datetime_check(self):
 hour = int(datetime.datetime.now().strftime("%H"))
 if hour >= 10 and hour <= 12:
 return True
 return False

But most often you want to combine such permissions checks. The next example
would allow an user to have permission to edit a flatpage only between
8 and 12 o’clock in the morning:

def morning_flatpage_check(self, flatpage):
 hour = int(datetime.datetime.now().strftime("%H"))
 if hour >= 8 and hour <= 12 and flatpage.url == '/about/':
 return True
 return False

Check custom permissions

The permission check is similar to Create a basic permission and
Create a per-object permission.

Warning

Although per-object permissions are translated to
<permname>_<modelname> this is not the case for custom permissions!
A custom permission my_custom_check remains my_custom_check.

In your python code

from myapp.permissions import FlatPagePermission
def my_view(request):
 check = FlatPagePermission(request.user)
 flatpage_object = Flatpage.objects.get(url='/homepage/')
 if check.my_custom_check(flatpage=flatpage_object):
 print "Yay, you can change *this* flatpage!"

Using the view decorator

from django.contrib.auth import Flatpage
from authority.decorators import permission_required_or_403

@permission_required_or_403('flatpage_permission.my_custom_check',
 (Flatpage, 'url__iexact', 'url')) # The flatpage_object
def my_view(request, url):
 # ...

See Check permissions using the decorator how the decorator works in detail.

In your templates

{% ifhasperm "flatpage_permission.my_custom_check" request.user flatpage_object %}
 Yay, you can change *this* flatpage!
{% else %}
 Nope, sorry. You aren't allowed to change *this* flatpage.
{% endifhasperm %}

See Check permissions in templates how the templatetag works in detail.

Check permissions in python code

to be written

Check permissions using the decorator

Note

A decorator is not the ultimate painkiller, if you need to deal with
complex permission handling, take a look at Check permissions in python code.

The decorator syntax

Lets start with an example permission:

class FlatpagePermission(permissions.BasePermission):
 label = 'flatpage_permission'
 checks = ('can_do_foo',)

 def can_do_foo(self):
 # ...

authority.register(Campaign, FlatpagePermission)

A decorator for such a simple view would look like:

from authority.decorators import permission_required

@permission_required('flatpage_permission.can_do_foo')
def my_view(request):
 # ...

The decorator automatically takes the user object from the view’s arguments
and calls can_do_foo. If this function returns True, the view gets
called, otherwise the user will be redirected to the login page.

Passing arguments to the permission

You can pass any arguments to the permission function. Assumed our permission
function looks like this:

def can_do_foo(self, view_arg1, view_arg2=None):
 # ...

Our decorator can grab the arguments from the view and passes it to the
permission function. Just take the arguments from the view and place them as
a string on the decorator:

@permission_required('flatpage_permission.can_do_foo', 'arg1', 'arg2')
def my_view(required, arg1, arg2):
 # ...

What happens under the hood?:

Assumed the view gets called like this
my_view(request, 'bla', 'blubb')

At the end, the decorator would been called like this
can_do_foo('bla', 'blubb')

Passing queryset lookups to the permission

You can pass queryset lookups instead of an argument. This might look a bit
strange first, but it can save you a ton of code. Instead of passing a simple
string to the permission function, declare a tuple of the syntax:

(<model>, '<field_lookup>', 'view_arg')
.. or ..
('<appname>.<modelname>', '<field_lookup>', 'view_arg')

Here is an example:

permission.py
def can_do_foo(self, flatpage_instance=None):
 # ...

views.py
from django.contrib.flatpages.models import Flatpage
@permission_required('flatpage_permission.can_do_foo', (Flatpage, 'url__iexact', 'url'))
def flatpage(required, url):
 # ...

What happens under the hood? It’s nearly the same as the simple decorator
would do, except that the argument is fetched with a get_object_or_404
statement. So this is the same:

(Flatpage, 'url__iexact', 'url')
get_object_or_404(Flatpage, 'url__iexact'='/about/')

Note

For all available field lookups, please refer to the Django documentation:
Field lookups [http://docs.djangoproject.com/en/dev/ref/models/querysets/#id7]

Contributed decorators

django-authority contributes two decorators, the syntax of both is the same as
described above:

	permission_required

	permission_required_or_403

In a nutshell, permission_required_or_403 does the same as permission_required
except it returns a Http403 Response instead of redirecting to the login page.

Just like Django’s 500.html and 404.html you are able to override the
template used in the permission denied page. Simply create a 403.html
template in your template directory. It will get the path of the denied page
passed as the context variable request_path.

Check permissions in templates

django-authority provides a couple of template tags which allows you to get
permissions for a user (and a related object).

ifhasperm

This function checks whether a permission is True or False for a user and
(optional) a related object.

Syntax:

{% ifhasperm [permission_label].[check_name] [user] [*objs] %}
 lalala
{% else %}
 meh
{% endifhasperm %}

Example:

{% ifhasperm "poll_permission.change_poll" request.user %}
 lalala
{% else %}
 meh
{% endifhasperm %}

get_permissions

Retrieves all permissions associated with the given obj and user
and assigns the result to a context variable.

Syntax and example:

{% get_permissions obj %}
{% for perm in permissions %}
 {{ perm }}
{% endfor %}

{% get_permissions obj as "my_permissions" %}
{% get_permissions obj for request.user as "my_permissions" %}

get_permission

Performs a permission check with the given signature, user and objects and
assigns the result to a context variable.

Syntax:

{% get_permission [permission_label].[check_name] for [user] and [objs] as [varname] %}

Example:

{% get_permission "poll_permission.change_poll" for request.user and poll as "is_allowed" %}
{% get_permission "poll_permission.change_poll" for request.user and poll,second_poll as "is_allowed" %}

{% if is_allowed %}
 I've got ze power to change ze pollllllzzz. Muahahaa.
{% else %}
 Meh. No power for meeeee.
{% endif %}

Handling permissions in python code

to be written

Handling permissions using Django’s admin interface

to be written

Note

Django admin actions are available in Django 1.1 or later.

Apply permissions using Django’s admin actions

This feature is limited to superusers and users with either the
“Can change permission” (change_permission) or the
“Can change foreign permission” (change_foreign_permission) permission [http://docs.djangoproject.com/en/dev/topics/auth/#permissions].

[image: _images/admin-action-permission.png]

Disable the admin action site-wide

To disable the action site-wide, place this line somewhere in your code.
One of your app admin.py files might be a good place:

admin.site.disable_action('edit_permissions')

Further informations are available in Django’s documentation:
Disabling a site-wide action [http://docs.djangoproject.com/en/dev/ref/contrib/admin/actions/#disabling-a-site-wide-action].

Disable the admin action per ModelAdmin instance

In case you want to disable the permission action per ModelAdmin, delete this
action within the get_actions method. Here is an example:

class EntryAdmin(admin.ModelAdmin):

 def get_actions(self, request):
 actions = super(EntryAdmin, self).get_actions(request)
 del actions['edit_permissions']
 return actions

Further informations are available in Django’s documentation:
Conditionally enabling or disabling actions [http://docs.djangoproject.com/en/dev/ref/contrib/admin/actions/#conditionally-enabling-or-disabling-actions].

Handling permissions using templates

to be written

Hints, tips and tricks

Within a permission class, you can refer to the user and group using self:

class CampaignPermission(permissions.BasePermission):
 label = 'campaign_permission'
 checks = ('do_foo',)

 def do_foo(self, campaign=None):
 print self.user
 print self.group
 # ...

You can unregister permission classes and re-register them:

authority.unregister(Campaign)
authority.register(Campaign, CampaignPermission)

Within a permission class, you can refer to Django’s basic permissions:

class FlagpagePermisson(permissions.BasePermission):
 label = 'flatpage_permission'
 checks = ('do_foo',)

 def do_foo(self, campaign=None):
 if foo and self.change_flatpage():
 # ...

authority.register(Flatpage, FlagpagePermisson)

If the Permission table changes during the lifespan of a django-authority
permission instance and the smart cache is being used, you will need to call
invalidate_permissions_cache in order to see that changes:

class UserPermission(permission.BasePermission):
 label = 'user_permission'
 checks = ('do_foo',)
authority.register(User, UserPermission)

user_permission = UserPermission(user)

can_foo is False here since the permission has not yet been added.
can_foo = user_permission.has_user_perms('foo', user)

Permission.objects.create(
 content_type=Permission.objects.get_content_type(User),
 object_id=user.pk,
 codename='foo',
 user=user,
 approved=True,
)

can_foo is still False because the permission cache has not been
invalidated yet.
can_foo = user_permission.has_user_perms('foo', user)

user_permission.invalidate_permissions_cache()

can_foo is now True
can_foo = user_permission.has_user_perms('foo', user)

This is particularly useful if you are using the permission instances during a
request, where it is unlikely that the state of the Permission table will
change.

Although the previous example was only passing in a user into the
permission, smart caching is used when getting permissions in a group as
well.

Support

We’ve created a google group [http://groups.google.com/group/django-authority] for django-authority. If you have questions or
suggestions, please drop us a note.

For more specific issues and bug reports please use the issue tracker [https://github.com/jazzband/django-authority/issues/] on
django-authority’s Github page.

Warning

This document is for internal use only.

Documentation Guildlines

Headline scheme

===================================
First level (equals top and bottom)
===================================

Second Level (equals bottom)
============================

Third level (dashes botton)

Fourth level (drunken dashes bottom)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~





Please try to use not more than 4 levels of headlines.




Overall salutation guidelines

Use the We and you:

We think that you should send us a bottle of your local beer.








Some thoughts


	Many internal links are good


	Text should not be wider than 80 characters


	Two pages are better than one ultra-long page










          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | G
 | I
 | P
 | S
 | U
 


A


  	
      	autodiscover, [1]


  





B


  	
      	BasePermission


  





G


  	
      	get_permission


  

  	
      	get_permissions


  





I


  	
      	ifhasperm


  





P


  	
      	permission_required


  

  	
      	permission_required_or_403


      	permissions.py


  





S


  	
      	settings.py


  

  	
      	Support


  





U


  	
      	urls.py


  







          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/comment.png





_static/down-pressed.png





_images/admin-action-permission.png
Select Entry to change

Q Search

0O e Category Location | Highlight | Top of list
[ Hotel Foobar  Unterkinfte ~ Hotel Sellin  © °

Action| ¢ Gof

Delete selected Entries

Permissions for selected Entries





_static/logo.png
¥ authority





_images/authority-object-1to1.png
Flatpages '

Fomesel
e
Contact

3 Items in the list






_static/minus.png





_static/favicon.png





_static/file.png





_images/authority-object-1toN.png
Flatpages '
Homepage

s
-

3 Items in the list






_images/authority-object-NtoN.png
Flatpages |

fla Alowed & iblish_flaty

k 3 tems inthe fst






_images/authority-permission-py.png
v & yourapplication
B _ini_py
) admin.py
[ forms.py
) modelspy
) permissions py
B views.py.





_static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to django-authority’s documentation!
        


        		
          Installation
          
            		
              The latest stable version
            


            		
              Development version
            


          


        


        		
          Configuration
          
            		
              settings.py
            


            		
              urls.py
            


          


        


        		
          Create a basic permission
          
            		
              Where to store permissions?
            


            		
              Basic permissions
            


            		
              Example permission checks
              
                		
                  In your python code
                


                		
                  Using the view decorator
                


                		
                  In your templates
                


              


            


            		
              How permissions are discovered
            


          


        


        		
          Create a per-object permission
          
            		
              Create per-object permissions
            


            		
              Attach per-object permissions to objects
            


            		
              Check per-object permissions
              
                		
                  In your python code
                


                		
                  Using the view decorator
                


                		
                  In your templates
                


              


            


          


        


        		
          Create a custom permission
          
            		
              Check custom permissions
              
                		
                  In your python code
                


                		
                  Using the view decorator
                


                		
                  In your templates
                


              


            


          


        


        		
          Check permissions in python code
        


        		
          Check permissions using the decorator
          
            		
              The decorator syntax
              
                		
                  Passing arguments to the permission
                


                		
                  Passing queryset lookups to the permission
                


              


            


            		
              Contributed decorators
            


          


        


        		
          Check permissions in templates
          
            		
              ifhasperm
            


            		
              get_permissions
            


            		
              get_permission
            


          


        


        		
          Handling permissions in python code
        


        		
          Handling permissions using Django’s admin interface
          
            		
              Apply permissions using Django’s admin actions
              
                		
                  Disable the admin action site-wide
                


                		
                  Disable the admin action per ModelAdmin instance
                


              


            


          


        


        		
          Handling permissions using templates
        


        		
          Hints, tips and tricks
        


        		
          Support
        


        		
          Documentation Guildlines
          
            		
              Headline scheme
            


            		
              Overall salutation guidelines
            


            		
              Some thoughts
            


          


        


      


    
  

_static/plus.png





_static/ajax-loader.gif





_static/authority-object-1to1.png
Flatpages '

Fomesel
e
Contact

3 Items in the list






_images/authority-scheme-layer.png
django.contrib. auth

T

v

django-authority

Your application

Basic permissions

Addiona
Row level

ke permissons





_static/up.png





_static/admin-action-permission.png
Select Entry to change

Q Search

0O e Category Location | Highlight | Top of list
[ Hotel Foobar  Unterkinfte ~ Hotel Sellin  © °

Action| ¢ Gof

Delete selected Entries

Permissions for selected Entries





_static/authority-permission-py.png
v & yourapplication
B _ini_py
) admin.py
[ forms.py
) modelspy
) permissions py
B views.py.





_static/authority-scheme-layer.png
django.contrib. auth

T

v

django-authority

Your application

Basic permissions

Addiona
Row level

ke permissons





_static/authority-object-1toN.png
Flatpages '
Homepage

s
-

3 Items in the list






_static/authority-object-NtoN.png
Flatpages |

fla Alowed & iblish_flaty

k 3 tems inthe fst






